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SUMMARY

In this document, a method is developed for using the integrals of systems of

nonlinear, ordinary, differential equations in a numerical integration process
to (I) control the local errors in these integrals and (2) rednce the global
errors of the solution. The method is general and can be applied to either
scalar or vector integrals. A number of example problems, with accompanying
numerical results, are used to verify the analysis and support the conjecture
of global error reduction.

INTRODUCTION

Whittaker (ref. I) defines the integral of a system of differential equations
as a function of the state and time when the total time derivative is zero and

the state variables are any functions of time. In solving nonlinear
differential equations by a numerical integration process, these integrals will

- be used along with their associated numerical errors to (I) control the local
errors in these integrals and (2) reduce the global error of the solution.

Integrals of systems of differential equations are constraints on the solution
and, as such, can be used to reduce the number of degrees of freedom in the

problem. Topologically, as more integrals of a system are introduced into the
problem, the solution is constrained to lie on a larger manifold of the
solution space with a resulting reduction in the global errors. The limiting
case is, of course, an analytic solution to the differential equations where

the solution is known at any time and the integral and global error are zero.

The direct approach (analytical substitution) to using integrals of systems of
differential equations to reduce the number of degrees of freedom in a problem
and to reduce the errors introduces other types of difficulties (such as sin-
gularities and switching logic in the remaining unsolved equations).
Invariably, the overhead of calculating the right-hand side (RHS) of the

remaining differential equations increases significantly; thus, any overall
advantage of such an approach is nullified.

In a direct analytical approach, Szebehely (ref. 2) linearized certain
nonlinear differential equations by utilizing the integrals of the system and
by introducing a new independent variable. This was an effort to formalize the

results of Stiefel and Scheifele (ref. 3), Burdet (ref. 4), $zebehely (ref. 5),
• and Sperling (ref. 6) who attempted to linearize, and in some cases stabilize,

certain nonlinear differential equations by transformations of the dependent
and independent variables of the problem.

t

A direct numerical approach was made by Nacozy (ref. 7). The numerical errors
in the integrals of the system were used to rectify the solution at each
integration step in an attempt to stabilize the solution and reduce the errors.
For some integrals, a linear expansion was necessary to compute the correction
vector. Using a fourth-order predlctor-corrector integration routine with a
variable stepsize, global error reduction of two or three order_ of magnitude
was obtained.



An optimization technique is the most general, indirect approach to controlling

the error in a system described by nonlinear differential equations. A perfor-
mance function is defined as a function of the error in the integrals, and the
differential equations of the system are adjoined to this performance function
by Lagrange multipliers. Through the use of variational calculus or some other

similar technique, differential equations for the multipliers and optimality
and boundary conditions can be developed. However, this is not an advisable
procedure for controlling the errors for the following reasons: (I) the number

of degrees of freedom in the problem typically increases twofold, (2) an it-
eration procedure is introduced to satisfy the developed boundary conditions,
and (3) the overhead in the solution of the problem increases significantly.
However, the error in the integral would be minimized and would be indirectly
used to reduce the global error of the solution.

A functional, indirect approach to introducing integrals of systems in the solu-
tion of differential equations was advanced by Baumgarte. In a number of
studies (refs. 8 through 10) he used the integrals of the system to stabilize
certain nonlinear differential equations and reduce the errors. The procedure

was based on the principle of adjoining a form of the constraint (the coeffi-
cient of the second derivative) by a Lagrange multiplier to the original sec-

ond-order system of differential equations. The technique was applied to sev-
eral problems and the results were encouraging. The error in the integral

(almost always the energy) or constraint was substantially reduced by using
this control process. However, several characteristics of these studies were
disappointing: (I) global error results of the solution were almost always

absent although some analytic solutions were available, (2) the technique re-
quired a particular formulation for the problem, (3) the parameters that were

introduced were not mathematically defined, and 4) a lack of generality
existed when applying the approach to any system of equations and constraints.

This document does not pretend to advance the best technique for using and
controlling the errors in the integrals of a system of differential equations.
It does propose a general technique for incorporating the integrals of a system
of nonlinear differential equations and their associated errors in a process
that will control the integral errors and reduce the global error of the solu-
tion. The process requires no increase in the number of degrees of freedom in

the solution. The technique has two disadvantages: (I) it requires some
premathematical analysis to formulate the control vector, and (2) it generates
some additional overhead and complexity in the solution.

D

STATEMENT OF PROBLEM

This study examines the numerical solution of a first-order, nonlinear system
of ordinary differential equations of the form

: F(X,t) X(O) = Xo at t = O (I)

which possess integrals of motion of the form

2_



J(X,t) : K (2)

where X and F are n-vectors and J and K are m-vectors; m < n and K

is a constant defined by the initial conditions. The system of equation (I) is
assumed not to be analytically integrable in terms of known functions and, hence,

must be solved by a numerical integration process. Specifically, this method
presents a numericai solution to equation (I) with the additional criteria

that the solution lies "arbitrarily close" to the (m + 1)-dimensional manifold
described in equation (2).

One obvious solution to this problem is to use equation (2) to eliminate m of

the X's and thus reduce the problem to integrating only the remaining (n-m)-
first-order differential equations. However, past experiences and the examina-

• tion of a particular system of differential equations and their associated inte-
grals indicate that this is not an advisable procedure. There is information
about the solution embedded in equation (2), and it should not be used only as

. a check on the numerical integration of equation (I), but it should be used
either directly or indirectly in the solution to reduce the errors and possibly
the number of degrees of freedom in the problem. For example, if a problem-
free procedure could be devised for introducing the m integrals of motion

into a system of n differential equations, and the m integrals were intro-
duced into the solution one at a time, the number of degrees of freedom in the
solution would be reduced by one each time, requiring the solution to lie on

a manifold with a dimension increasing by one. If there were actually n inte-
grals of motion, then as m approaches n, the solution would be constrained

to a larger subspace of the problem, and would also have global errors that
tend to zero-vanish when m equals n.

Because the direct approach to using the integrals of motion in the solution of
a system of differential equations introduces other mathematical difficulties,
an indirect approach shall be proposed to solve equation (I) while attempting

to satisfy the constraints expressed by the integrals of the motion.

SOLUTION WITH ERRORS

If equation (I) is solved by a numerical integration process, the solution will
certainly contain errors. Consider these errors as due to the inability of the
numerical integration process to correctly evaluate the right-hand side (RHS)

° of the differential equations• Defining the numerical errors in the RHS from
the integration process as _F, the differential equation (eq. (I)) can be
expressed as

= F(X,t) + _F (3)

where at the initial time (t = 0), _F(O) = O. The vector F(X,t) in equa-
tion (3) is the exact representation of the RHS of the differential equations.

Now consider the term 6F as a perturbation to the original system of equation
(I). The integrals of motion (eq. (2)) are not conserved (K is not equal

p



to a constant) and the differential equations for their rate of change can
be expressed as

= G(X, _F, t) (4)

where G is a vector function of the indicated arguments. The numerical error
in the integral of motion is defined as

: K - Ko Ko : K(O) (5)

The differential equation for the time rate of change of the error is simply

However, _F is not known (except at the initial time) since the exact solution

of the RHS in equation (I), F(X,t) is not known. Hence, it appears that this
development is an interesting but insignificant exercise.

SOLUTION WITH CONTROL

In this section, a solution philosophy used in optimal control' theory (ref. 11)

will be adopted. In controlling a system, it is fundamenta! to have a process
that is (I) observable and (2) controllable. The first criterion is certainly
fullfilled, for it is noted in the numerical integration process that the value
of the integral is not constant but grows in some manner characteristic to the
particular numerical integrator, stepsize, etc. The second criterion, however,
is not fullfilled.

The process is not controllable because the error vector _F is an unknown
output of the numerical integration process and not an input.

A control vector k (an n-vector) is added to the RHS of equation (I) (the

exact equation) in an attempt to control the numerical error 6F of the inte-
gration process.

= F(X,t) + k (7)

The justification for the addition of the vector _ to the original equation

(eq. (I)) is: if m integrals of the motion or constraints exist to a system
of n equations, then the solution to this system of equations is constrained
to lie on a m-dimensional manifold of the solution space and there are only

n-m independent degrees of freedom in the problem. The introductionof a



control vector _ is an attempt to numerically reduce the n-order dependent
system of equations to a (n-m)-order independent system of equations.

The introductio_ of the control vector _ to the RHS of the exact equation _

(eq. (I)) implies that the numerically integrated equation (eq. (3)) has a
similar term added to its RHS. Of course, it is understood that with the
addition of the control vector _, the term _F appearing in equation (3) will

have a different meaning since the error vector will certainly be disturbed by
the introduction of this control vector• The introduction of the control

vector _ is an attempt to introduce a term to cancel all or part of the error
vector 6F such that when the numerical integration process is applied to equa_

tion (7), the error (defined in eq. (5)) will be arbitrarily close to zero.
Thus, if

_F + _ : 0 (8)

and equations (5) and (6) are used to obtain a "stable" solution for the

control vector X, the numerical integration process will produce a value of
the state X, which nulls the error. Also, since the number of degrees of
freedom in the system of equations to be integrated have been numerically
reduced, it is conjectured that the global error of the solution will also be
reduced• A solution for the n-vector X from the system of m-constraint
equations must now be obtained.

Since the error rate and the error are now controllable, a stable differential

equation for the desired functional relationship between these two errors is
introduced as

:-Y_ (9)

where Y is a positive function (defined in the appendix)• Now, any error

arising in the integral of motion due to a dissatisfaction of equation (5) will
be critically damped by the control vector _ obtained from equation (9).
Using equations (4), (5), (6), and (8) in equation (9) gives

• G(X,-k,t) = -Y (K(X,t) - Ko) (10)

. Since the vector k must span-the-spacedefined by the state vector X, a
solution for k is assumed to be

k : AX (11)

where A is an undefined matrix of appropriate dimensions. Using equation
(11) in equation (10)yields



G(X, -AX,t) = -Y (K(X,t) - Ko) (12)

The problem of controlling the integral errors is reduced to determining a solu-
tion of an algebraic equation. Any solution for the undefined matrix A that
satisfies equation (12) will produce a control vector (from eq. (11)) that,
when used in the numerical integration process, will control the errors in the
integrals of motion. The difficulty in determining a matrix A that satisfies
equation (12) is, of course, problem dependent. In two of the example problems
(linear oscillator and two-body problem) with a scalar integral of motion

(energy), the matrix A was obtained by inspection. In a third example (two-
body problem with an angular momentum integral), some manipulation was required
to obtain a matrix A that satisfied equation (12). In a final example, a

solution is developed to the two-body problem when both the energy and the
angular momentum integral errors are present.

ONE-DIMENSIONAL HARMONIC OSCILLATOR

The first-order linear, differential equations describing the one-dimensional
harmonic oscillator state are

XI = X2

X2 = -XI (13)

Since an analytic solution to this problem exists, thereare two integrals of
motion. For this exercise, however, it is assumed that equation (13) cannot be

solved analytically and that only one integral of motion (energy) exists and is
defined as

J(X) = I/2 xTx = k

where the superscript T refers to the transpose.

The numerical error in the integral is defined as

€ = I/2 xTx - ko ko = k(O) (14)

Adding the control vector _ to equation (13), the controlled equation to be
integrated is

XI = X2 + kl

X2 = -Xl + _2 (15)



Developing the total time derivative of the integral of motion, using equation
(15) yields

: o(x,k): xTx (16)

A stable differential equation for the functional relationship between the
error and error rate is defined as

E = -Y E 17)

, where Y is a positive scalar function. From equations (14), (16), and 17),

the control vector k is required to satisfy the following equation.

xT(x + - X) : Y ko 18)2

If Y were a constant, equation (18) would represent a new integral of motion;
however, one that is functionally dependent on the control vector.

A solution is assumed for the control of the form

Y
k + - X = Yko (%X (19)2

where (% in an undefined coefficient. Using equation (19) in equation (18),
a necessary condition is

(%xTx = I

One value of the coefficient satisfying the equation is

I
(% --

2k

which results in a control vector (from eq. (19)) of
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:- -_-sx (2o)
2 k

As expected, the control vector for the energy integral error is in the form of
a feedback control law directly proportional to the error. It should be noted

that the vector _ is never singular unless the energy constant is zero
(trivial case).

Comparative Results

Equation (15)was integrated with a fixed-step, fourth-order, Runge-Kutta
integrator using the control vector defined by equation (20). Since the period
of the uncontrolled solution is equal to 2_, solutions were obtained for a con-
stant integration stepsize defined as

h = 2_/N

where N is the number of steps in the integration process. The function
was determined from a solution of the equation E(t + h) = 0 at each

integration step (see appendix). For this linear problem, the function Y for
each value of N was found to be a constant.

In the solution, it was noted that the uncontrolled error .in the energy grew in
a linear manner with time. The controlled error remained essentially constant
at a value five to ten orders of magnitude less (depending on the value of N

and t) than the uncontrolled error. Thus, the method described in the analy-
sis of controlling the error in the integral of motion appears to be valid for
the linear problem.

Because the analytic solution to equation (13) is known, the global error of
the numerically integrated solution can also be computed. The global error at
a given time is defined as

= Ixl- xAl (21)

where the superscripts I and A on the vector X refer to the integrated

and analytic values, respectively. The global error of the controlled solution
was found to be always less than that of the uncontrolled solution. This indi-

cates that the correct information from the error in the integral of motion was
entering the solution via the control vector _. However, although the inte-
gral errors were reduced substantially by the control, the global error showed
only an infinitesimal reduction. This agrees with the results reported by
Nacozy (ref. 7) for the harmonic oscillator problem.

8



Conclusion: For this linear and stable problem, controlling the error in the
integral of motion has only a negligible effect on the global error of the
solution.

TWO-BODY PROBLEM WITH ENERGY INTEGRAL

The first-order, nonlinear differential equations describing the two-body prob-
lem are

: V (22a)

• _ : -P R__ (22b)
r3

where R and V are the position and velocity vectors (respectively), U is

the gravitational constant and r = IRI. There are three integrals of motion
to this system of equations (not all independent): two vector integrals -
Laplace and angular momentum, and one scalar integral - energy. This example
is concerned only with the energy integral that is formally obtained by scalar

multiplying equation (22a) by V, and equation (22b) by R, then taking the dif-
ference and noting the exact differential. This integral can be expressed as

J(R,V) = I/2 vTv - u/r = k (23)

where k is a constant of the motion defined by the initial conditions. If
equation (22) is solved with a numerical integrator, the solution will contain

errors. This numerical error in the energy integral is defined as

= k - ko ko : k(O) (24)

and the differential equation for its time rate of change is defined as

w

Now a control vector

kT : (kRT, kvT)

,



is added to the RHS of equation (22) in an attempt to control the numerical
error in the integral of motion. For convenience of notation, a state vector
is defined as

and an associated matrix is defined as

-r31 0 1

A :

0 I/2 I

where 0 and I are appropriate null and identity matrices, respectively.
Using these identities, the numerical error and error rate can be expressed as

= sTAs - ko

: ,ITs (25)

The stable differential equation (eq] (17)) is now used for the functional
relationship between the error in the integral of motion and its time rate of

change. Using equation (25) in equation (17) yields

sT(I - Y AS) : -Yko (26)

Since the vector 1 must span the space defined by the state vector S, an
assumed solution for 1 is

I - Y AS = -Yko A S (27)

where A is an undefined matrix. Using equation (27) in equation (26), a

necessary condition is

sTAS = I (28)

I0



Comparing equations (28) and (24), it is noted that one solution for the undefined
matrix A is

A
n = -

k

which results in a control vector (from eq. (27) of

= y _ AS (29)
k

. Thus, the control vector for the energy integral of the two-body problem can be
cast in the same form as that of the control vector for the harmonic oscillator

problem. It is only singular for the special case when the energy constant is

zero (parabolic orbit).

Numerical Results

Equation (22) with the added control vector defined by equation (29) was in-
tegrated with the same processor as the previous example. However, the con-
stant stepsize was determined as

r

P
h = -

N

where P is the period of the orbit defined by the initial conditions.

Figure I illustrates a comparison of controlled and uncontrolled solutions for
a two-body problem. The solutions were obtained using a fourth-order, Runge-

Kutta integrator with a constant stepsize of N. The abscissa label of NORBIT
refers to the number of orbits the equations were integrated, while the ordi-

nate is the logarithm to the base 10 of either the absolute value of the posi-
tion error or velocity error. (These two errors were approximately equal for
this problem.) Hence, the ordinate is a measure of the number of significant

digits of information remaining in the solution at a given time (a measure
of the global error of the solution). The solid curves in figure I refer to
solutions obtained with the addition of the control vector k, while the dashed
curves refer to no control.

In figure 1(a), the initial conditions were specified by a circular orbit that

is an orbit with an eccentricity e = 0 and semimaJor axis a = i. For N = 20,
the uncontrolled solution has lost all information content at NORBIT equals 20,

11



whereas the controlled solution still retains approximately two digits of ac-
curacy. For N : 40, the controlled solution has approximately two additional
digits of accuracy at NORBIT equals 40. For a given N, the two solutions are

diverging; that is, the Uncontrolled solutions have a steeper slope or are
approaching zero more rapidly than the controlled solutions.

In figure 1(b) and I(c), similar results are obtained for initial orbits with
eccentricities of e = 0.1 and e = 0.2, respectively . For N = 20, the
uncontrolled solution for e = 0.1 and e = 0.2 has zero-significant digits

of accuracy at NORBIT = 15 and 9, respectively.

When overlaying figures 1(a) and 1(b), it is noted that the controlled solution
shows almost no loss in accuracy for this change in eccentricity, whereas the
uncontrolled solution shows significant losses. Similar (but not as

significant) results are obtained when overlaying figures 1(b) and I(c).

The errors in the integral of motion (energy) in figures 1(a) through I(c)
behave similar to that of the harmonic oscillator problem. The uncontrolled in- °

tegral error grows almost linearly with time; the slope is determined by the
initial conditions and the number of steps N. The controlled integral error
remains nearly constant in value, with a number of orders in magnitude less

than the uncontrolled solution. The actual number of orders in magnitude
depends on the initial conditions, integration stepsize, and integration time.

In figure 2, the Y function is plotted versus time for one orbit for the

three sets of initial conditions defined by e = 0.0, 0.1, and 0.2. For
e = 0.0, which is similar to the previous linear problem, the ¥ function is
nearly constant. The Y functions for e £ 0 are periodic in nature. For
e = 0.2, there is a portion of the solution where Y < 0. Since there are no

constraints imposed on either the sign or the magnitude of the function Y,
a negative value is certainly possible (although disconcerting) when viewed
from a solution to equation (9).

In the next two example problems (concerned in part with controlling the error
in the angular momentum vector), only the control vector and an outline of the
solution are developed.

TWO-BODY PROBLEM WITH ANGULAR MOMENTUM INTEGRAL

The differential equations to be integrated are the same as in the previous
example; however, the angular momentum integral shall now be considered, and it
is expressed as

t

J (R,V) = R x V : K (30)

where the vector K is a constant of the motion defined by the initial con-
ditions. Similar to the previous example, the numerical error vector in this

integral is defined as

12



: K - Ko Ko : K(O) (31)

T T
and after introducing a control vector IT = (IR , IV) into the RHS of
equation (22), the time rate of change of the error may be determined as

= R x lV - V x lR (32)

A stable vector differential equation for the functional relationship between
the vector error and its rate is defined as

_ = - Y E (33)

. where Y is again a positive function. The control vector _ must now span
a space defined by the vectors R, V, and K or

eR eV eK li

= (34)

BR 8R 8K

where the _'s and 8's are undetermined scalars. But from equation (32),

any component of the vector kR parallel to the vector V and, similarly, any
component of the vector kV parallel to the vector R will have no

effect on the error rate vector _.

Hence, the vectors IR and _V have the simpler form

kR =eR R +_K K

lV : 8V V + 8K K (35)

Using equation (35) in equation (32), the error rate vector is

, _ = (eR + 8v) K + (8K R -e K V) x K (36)

The first and second terms on the right-hand side of this equation, are the rates

of change of the angular momentum error vector along and perpendicular to the
vector K, respectively. Taking the inner product of the vectors K, U = R x K
and W = V x.K (respectively) with equation (36) and using equation (33) yields
the necessary conditions on the coefficients e and 8:

13



(_R + BV) = -Yq

BK uTu - aK uTw = -¥ UTe (37)

BK uTw - aK WTW = -Y WTe

where

eT K

q =

KT K

w

The first equation implies that _R and BV are homogenous in the te_m q.
One solution for these coefficients is

aR = -Y c q , BV = -Y(I - c)q (38)

where the coefficient c is to be determined. The latter two equations (37)

can be solved for aK and BK as

eK : YA [(eTw)(uTu) - (eTu)(uTw)] (39

8K : _ [(£Tw)(uTw)- (eTu)(wTw)] •

where the determinant, A, is

•A = (uTu)(wTw) - (uTw)2

It should be noted that the determinant is only zero for rectilinear motion.

The control vector for the vector angular momentum error is

)'R : aR R + a K K
(4O)

kv = 8v V + 8K K

14



where e and B are defined by equations 38) and (39) and Y is determined

from the condition l_(t + h)I = 0 (see appendix).

The coefficient c in the angular momentum error control vector is a scaling

parameter between the components of error along and normal to the vector K
(eq. (36)). Since the physics of the problem dictate that the error normal to
the vector K will be extremely small, the actual value of the coefficient c
used in the solution will have a minimal effect on the global error. One

difficulty should be mentioned. Since the angular momentum error is formed by

a vector product rather than as in the energy error (a scalar product) a con-
siderable amount of algebraic manipulation will be required to obtain the
function Y.

TWO-BODY PROBLEM WITH ANGULAR MOMENTUM AND ENERGY INTEGRALS

In this section the scalar energy integral is added to the vector angular momen-
° tum integral, and a control vector k for both of these errors is determined.

From equations (28) and (37), the necessary conditions on the coefficients
and _ are

_R

r + BV vTv = Ykek

(41)

_R + Bv : "YK q

where eK and BK are given by equation (39) and the subscripts k, K refer
to variables associated with the energy and angular momentum integrals, respec-

tively. Solving equation (41) for the coefficients _R and 8V yields

_R = -(Yk Ck + YK q vTv)/(2k + _/r)

e _ 0 (42a)

BV = (Yk ek + YK q _/r)/(2k + _/r)

However, this solution is singular when the eccentricity of the orbit e = O.
A solution valid for e : 0 is

q

-Yk Ck
_R :

k

e = 0 (42b)

Yk Ck
8V =

2k

15



with the additional condition

Yk € k
= YK q (43)

2k

Thus, for orbits with e = O, the function 7K is not directly determined by

the integrator but by the function Yk and the integral errors. But, the coef-
ficients given by equation (42b) will produce the energy error control vector

given by equation (29). Then if the coefficients eK and BK are small and
if e _ O, the control vector that was used to reduce the energy integral error
will also reduce the angular momentum integral error. The conclusion has been
numerically verified.

For the problem illustrated in figure 1(a) with N = 20, the energy integral

control vector reduced the angular momentum integral errors by approximately
five orders of magnitude. However, when the eccentricity e was equal to 0.1,
the energy integral control vector only reduced the angular momentum integral
errors by approximately one order of magnitude.

CONCLUDING REMARKS

This method for using the integrals of systems of nonlinear differential equa-
tion and their associated numerical errors should be applied to (I) a variable
step integrator, preferably the Runge-Kutta 4/5, (2) other problems where inte-
grals or other type of constraints are satisfied through rectification at each
integration step, and (3) an unstable system of nonlinear differential
equations.

Lyndon B. Johnson Space Center
National Aeronautics and Space Administration

Houston, Texas, March 28, 1980
910-_-0o-00-y2
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APPENDIX

CALCULATION OF THE FUNCTION Y

For a fourth-order, fixed-step Runge-Kutta integrator, the state vector is
updated at a time t + h by the expression

X(t + h) : XO + h
(FI + 2(F2 + F3) + F4) Xo = X(t) (AI)

where h is the integration step and the functions FJ are defined as

FI = F(Xo, to)

F2' to +

F4 : F(Xo + hF3, to + h)

•For the controlled solution, the right-hand sides of the differential equations

may be separated into two parts; the vector F and the vector _ adjoined by
the unknown function Y:

= F(X,t) + Y n(X,t)

T

where Y _ : _. For simplicity of notation_ the argument t is excluded from
the vectors F and D. Then the vector F] may be expressed as

FI = F(Xo) + ]'T](Xo)= Fo + Y no (A2)

and the vector F2 may be expressed as

A-I



F2= F [Xo+_(Fo+_no))+X n <Xo+_(Fo+_ no))2

But the vector _ represents a small perturbation to the vector F, and

hence the vector F2 may be approximated as

F2 = FI + Y (ql + 61) + ... (A3)

where

FI : F(XI) nl = D(XI ) XI : Xo + h F0
4

and

61 : h (_F 8_I (_° + 6o) 6° : 0J + J1xl

Similarly, the vectors F3 and F4 may be expressed as

F3 = F2 + Y(q2 + 62)
(A4)

F4 = F3 + Y(n3 + 63),

where

X2 : Xo + h
FI

X3 : Xo + h F2 P

Thus, the coefficient of _ in equation (AI) may be expressed as
6

FI + 2(F2 + F3) + F4 = Jf + Y(_+_ ) (A5)
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where

F = Fo + 2(F I + F2) + F3

= _o + 2(qI + q2) + q3

= 6o + 2(61 + 62) + 63

For clarity, the analysis is restricted to a particular problem - the harmonic
oscillator. Extensions to other problems are straightforward. The desire
is to determine the function Y, which will result at a time t + h in an
integral error of zero.

i

O = _(t + h) = I/2 X(t + h)T X(t + h) - ko (A6)

Using equations (AI) and (A5) in equation (A6) yields

i Xo + h ]2

This is a polynominal in the function Y; however, if the small term 8___
8X

is ignored, equation (A7) may be expressed as the quadratic equation

a Y2 + b Y+ c = 0

where

12a=
v

.I 3 6 (fl +.d)

h 12
C = ]X+_ Jf -2k 0
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There are two solutions for the function 7; however, it may be readily
verified that the plus sign of the radical is correct.

?
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